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The tilt mode instability of a held reversed coniiguration (FRC) is discussed. Previous 
numerical models have not adequately explained the behavior of this mode. A particle-in-cell 
(PIG) model in Cartesian coordinates is introduced with an explanation as to why it 
represents the physics of FRC’s more closely. The PIC model is implemented in a FORTRAN 
code, QN3D. The major elements of this code are presented including the many techniques 
required for its optimization. We discuss many of the major factors in optimization that are 
dependent upon features of the Cray-2 multiprocessor. Testing of the code is presented in 
three phases. First, single particle motion is analyzed. Next the normal modes are calculated 
and simulated. Finally, QN3D is applied to the rigid rotor problem. These tests indicate that 
the code is suited to model plasma phenomena in the parameter regimes of interest. Lastly, 
two cases of the tilt mode problem are treated. The results match current experiments and 
confirm our initial hypothesis as to why other models are not adequate. 0 1989 Academic 

Press, Inc. 

I _ INTRODUCTION 

This paper describes a 3D hybrid, particle-in-cell code which is used to model the 
tilt mode in field-reversed configurations (FRCs). FRCs are elongated compact 
toroidal plasmas which are formed in theta pinches with a static filling of neutral 
gas [l]. The FRC contains open and closed field line regions, with only poloidal 
fields. 

Of particular interest is the m = 1 internal tilt which is an axial shift of the plasma 
with a toroidal mode number of 1. Figure 1 shows a plasma starting to tilt. 
Magnetohydrodynamics (MHD) codes have shown that the FRC should be 
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FIG. 1. Example of the tilt mode in an FRC: Plotted is AO. This is the result of QN3D advancing 
the equilibrium for about 1 ps. 

violently unstable to the tilt mode with growth times comparable to the time it 
takes an Alfvtn wave to transit the system. This is typically on the order of 
microseconds [2] and if the mode existed it would be very disruptive. Two-dimen- 
sional, non-linear MHD particle codes [3, 43 have been constructed to model this 
problem in a slab geometry. Simulations with these codes show that the tilt does 
not saturate but rather continues until the fields tear and reconnect resulting in the 
loss of particles and energy [S]. Other non-linear MHD codes confirm these results 
[6]. However, surprisingly enough, experiments which last for hundreds of 
microseconds (many MHD growth times) never exhibit this mode at all [ 11. 

MHD codes categorically ignore the finite size of particle orbits about the 
magnetic fields, treating the entire plasma as a fluid that streams along the fields. 
A measure of the relative size of the ion orbits to the plasma scale length is s (see 
Eq. (lo)), which itself is a measure of the number of gyroradii between the o-point 
(field null) and the separatrix (separation between open and closed field lines). In 
low s cases (like present experiments), the ion orbits are large and could sample 
good magnetic field curvature possibly resulting in stability of the tilt mode. For 
high-s cases (like future experiments), the ions are more confined to the magnetic 
field lines which could result in instability. If this is the case, then the pessimistic 
predictions of MHD codes are applicable to larger experiments. 

Therefore, we need a computational model that includes finite ion orbits. A code 
built on this model would have to run in both regimes to demonstrate consistency 
with current experiments and to predict the evolution of plasmas in larger 
experiments. One of the first attempts to include ion motion was a modification of 
the MHD equations to include the ion orbital (Larmor) radius about the field lines 
[7]. This finite Larmor radius (FLR) model has two basic flaws--first, it does not 
account for very large radii of particles near the o-point, and second it assumes that 
the magnetic moment of the particles is an adiabatic invariant which was shown 
not to be the case [S]. 

A new method developed by Barnes et al. [9] is based on the Vlasov-fluid model 
[l&12] which treats ions as collisionless particles and the electrons as a cold and 
massless fluid. A dispersion functional is developed [ 131 which involves time 
history integrals for the ion trajectories. These integrals are evaluated numerically 
by using many ion orbits determined by a self-consistent equilibrium. Using the 
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MHD eigenfunction as the trial function in the dispersion functional, eigenfrequen- 
ties can be computed which include the kinetic ion effects. This should lead to a 
computation of the linear growth rates for all of the modes. This work is still in 
progress. 

1.1. Introduction to QN3D 

We present a code that explicitly follows many ion orbits and computes fields 
consistent with ion motion. Also, we make no linearizing assumptions. But, since 
the gyroradii of electrons is about one-fortieth that of ions, we still ignore their 
effect and treat the electrons as an inertialess fluid. The purpose of this work was 
to develop such a code and to apply it to the tilt mode problem. In addition to 
correctly modelling the tilt mode in the linear regime, our code should be able to 
follow the evolution of the mode into non-linear regimes. 

Since the tilt mode is a 3-dimensional phenomenon, the code developed, QN3D 
is also three dimensional. Such a code was not feasible before the advent of the 
Cray-2 computer since large amounts of storage are required. Also, certain essential 
phases of computation had been very slow prior to the introduction of some special 
hardware instructions on the Cray-2. 

In the remainder of this paper we first discuss the parameter regime of interest 
from which we derive a basic set of equations. Next, in Section 2 we explain the 
computational cycle. In Section 3 we explore single particle motion in static fields. 
This is followed by normal mode simulations in Section 4 and the rigid rotor 
instability in Section 5. Finally we explore the tilt mode in Section 6. 

To date, we have simulated a few cases that illustrate QN3D suitability to the 
problem and test our initial hypothesis regarding larger machines and smaller 
orbits. The equations solved in our system are derived from Maxwell’s equations 
and the equations of motion for the particles invoking several assumptions. The 
Darwin model is used which neglects the transverse displacement current and 
thereby the propogation of light waves [14]. In addition, the electron momentum 
is ignored, quasineutrality is assumed, and the electrons are cold. These assump- 
tions result in the system [ 151 

&JexB 
en,c 

A42=eE+evixB, 
c 

(1) 

(2) 

(3) 

(4) 

where J, = -eny,. Notice that we have set n, = ni consistent with quasineutrality. 
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Also note that this system is non-linear due to Eqs. (3) and (4). QN3D integrates 
these equations in time and the method of solution is described in Section 2. 

Notice that Eq. (3) becomes ill-defined as n,+ 0. But even before this happens 
our scheme becomes incorrect. The final equations were derived under the assump- 
tion that vA/c is small, where vA is the Alfven speed. But as n, -+ 0, vA + cc negating 
our premise. Thus we solve V2E = 0 in the low-density region. 

Two of the original four Maxwell’s equations are not represented here. The first 
is Gauss’ law, V . E = 471~~. The only contribution of the density is in Eq. (3), where 
we use n, x nj to zeroth order. Gauss’ law could be used to find n, to first order but 
it does not contribute to the system of equations, and thus we never solve it. 

The second is V . B = 0. But if V . B is initially zero, then it always will be, and 
we can eliminate it from the final set of equations. 

2. THE COMPUTATIONAL CYCLE 

We use a particle-in-cell (PIC) model for two reasons. The first is that since a 
plasma is an ionized gas, the particles shield each other within a Debye length 
[16]. Thus particle-particle interactions are not effective over spatial scales longer 
than AD. The second is that the collision frequency (v,) is very much smaller than 
the frequency of long-range plasma effects such as the plasma frequency (op) [ 161. 
Thus we can ignore particle-particle interactions when we are considering 
phenomena occurring on space scales longer than 1, and on time scales shorter 
than v;’ . 

The PIC method consists of particles moving in free space under the influence of 
fields that are computed on a grid. Thus, given electromagnetic fields computed on 
a grid, they are interpolated to the particles, the particles are moved according to 
the forces exerted on them by these fields, and then the charge and current densities 
are interpolated to the grid. To end the cycle the fields are solved on the grid 
consistent with the charge and current densities to prepare for the next cycle (see 
Fig. 2). The rest of this section addresses each phase of the PIC cycle individually, 
stressing techniques used to take advantage of the Cray-2. 

2.1. Solving the Field Equations 

The particle push gives us Ji and ni at an advanced time step through a time- 
explicit integration of the ion equations of motion (see Section 2.3). If we are 
currently at time step n, then these particle quantities will be at step n + i or n + 1 
depending upon the needs of the fields solving algorithm. The function of the field 
solver is to advance the field quantities E and B from step n to step n + 1 consistent 
with the ion quantities. 

A straightforward method for solving the fields is functional iteration. Upon a 
suggestion from Hewett [ 171, we developed a time and space centered iteration 
scheme to advance the fields from step n to n + 1 using particle quantities at time 
step n$. 
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FIG. 2. The computational cycle: The code starts with fields given on the grid at time step 0, particle 
positions given at time step 0 and particle velocities given at time step - 4. The cycle starts with inter- 
polating fields to the particle positions. 

Discretizing in time, Eqs. (1 t(3) become 

B 
z =B”-2 

cdtVx(E;+l’+E”) 

E n+l_ 1 
ktl - ___ Jz ::/; x (B;;; + B”) - E”. en”+‘/2C . I 

(5) 

Since the first of these equations requires a knowledge of E at the new time step, 
we guess at its value and find a better guess from the last equation. Thus this is an 
iterative scheme with the subscript k indicating the iteration. 

All spatial derivatives are represented as central differences. To initialize the 
iteration we used El+’ = E”. It characteristically converged in 4-9 iterations to a 
relative error of 10e3. 

The scheme presented above has a limitation in that it is sensitive to the particle 
density. We mentioned that the assumptions about the expansion parameter, 
E = vA/c were violated. In addition, long before ni= 0, any explicit numerical 
scheme will become unstable since the CFL condition is violated. In this case the 
CFL condition is approximately At < Ax/v,, a standard result for hyperbolic 
systems. In certain cases, the ion response can be ignored and a parabolic system 
results. Then the CFL condition is At < fQA~/v~ which is typically more stringent 
than the hyperbolic condition [ 181. To avoid this problem, V2E = 0 is solved in the 
low-density regions. The cutoff between high- and low-density regions was always 
selected to satisfy the CFL condition. 
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To solve the vacuum equation, a standard Gauss-Seidel method could be 
employed. For example, the x component of E is 

EX(1, J, K) = DELF * ((EX(I+ 1, J, K) + EX(I- 1, J, K)) * DXIS 

+ (EX(1, J + 1, K) + EX(1, J - 1, K)) * DYIS 

+ (EX(1, J, K + 1) + EX(1, J, K - 1)) * DZIS), 

where DELF = l/(2 * (DXIS + DYIS + DZIS)) and DXIS = l/d:, etc. The notation 
has changed to indicate that this is a FORTRAN assignment statement which gives 
us an iteration algorithm for solving for EX. 

The value of the electric field is assumed to be given on the external boundary 
and in the plasma. For each iteration of Eqs. (5) the electric field is found in the 
low-density regions by this method. 

2.1.1. Multigrid Method 

Unfortunately, Gauss-Seidel converges very slowly and enhancements such as 
successive overrelaxation offer only minor improvement. To speed up convergence, 
a multigrid method was employed. 

The multigrid method has many advantages. For instance, it does not require 
symmetric operators as do conjugate gradient methods, nor does it require a lot of 
additional storage as do most direct methods. But mostly, it is very much faster 
than other iterative methods. 

The basic idea of the method is to use iterative schemes in the limited regions 
where they work best. Methods like Gauss-Seidel reduce short wavelength errors 
very effectively but do very poorly on long wavelength errors. But, on a coarser 
grid, relatively long wavelength errors become relatively short wavelength errors 
(relative to the current grid spacing) and then iterative methods become more 
effective. 

For computational simplicity we choose coarser grids which are subsets of the 
original, finest grid. For each coarser grid, we use every other point in each of the 
three spatial directions of the liner grid. Thus each coarser grid has one-eighth the 
grid points of the previous, finer grid. As a result, we can reduce the work by a 
factor of 512 with only four levels of grids. One can begin to see why multigrid is 
so promising for a 3-dimensional problem. 

The most obvious scheme would be to solve the given equation on every grid. In 
fact, we do solve V*E = 0 on the finest grid, but on the other grids we solve for the 
error of the previous, liner grid. This method, called Cycle C, is due to Achi Brandt 
[ 193. More information on multigrid methods can be found in [20,21]. 

There is a great advantage to solving the error on each grid rather than the field 
itself for our particular application. We have an internal plasma region where the 
field is given by the solving Eqs. (5). This is an internal boundary which might not 
be resolved well by coarser grids. Thus the value of the fields at the internal boun- 
daries could change drastically as we go to coarser grids (see Fig. 3). However, if 
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VACUUM PLASMA VACUUM 

h3.3. M&grid and the plasma-vacuum interface E is plotted versus x. The plasma field is assumed 
to be given and the vertical lines delimit the boundaries between the plasma and the vacuum. On the 
coarser grids denoted by circles, the bounary value is given by the first circles within the plasma region. 
These values are greatly different than the boundary values of the liner grid. 

we are solving for the error in the fields, then we assume that the field is correct 
within the plasma and thus the error is always zero there. 

In QN3D, for a large grid with 41 grid points in each direction, multigrid was 
6.4 times faster than Successive Over Relaxation. 

2.2. Interpolating the Electromagnetic Fields from the Grid 
to the Particles 

Once the fields exist on the grid, we must interpolate them to the particle 
positions. QN3D uses tri-linear weighting to do this [22]. B&linear weighting is 
discussed here for simplicity, but the 3-dimensional analog should be quite evident. 
The formula for bi-linear interpolation is 

BPX(N) = Al * BGX(IP(N), JP(N)) + A2 * BGX(IP(N) + 1, JP(N)) 

+ A3 * BGX(IP(N), JP(N) + 1) + A4 * BGX(IP(N) + 1, JP(N) + 1). 

where BPX(N) is the x component of the magnetic field at the position of particle 
N, BGX(1, J) is the x component of the magnetic field at grid point I, J, and Al 
through A4 are the areas shown in Fig. 4. 

FIG. 4. B&linear weighting: The “x” marks the center of the particle. 
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Similar equations hold for the other five components of the electromagnetic 
fields. In three dimensions, the above equation would have eight terms correspond- 
ing to the volumes that represent the overlap of the particles with the domains of 
its eight nearest grid points. 

Notice that the indices of BGX, IP, and JP have their own index, N. This 
construct is called indirect indexing. Computers such as the Cray-2 have hardware 
instructions to allow the vectorization of these constructs with a sizeable reduction 
in the CPU time required for similar tasks [23]. The concepts, gather and scatter, 
respectively refer to the techniques used to read and write BGX from and to 
memory. 

2.3. Advancing the Particles 

Once the fields are known at the particle positions, the particles are advanced 
from their old positions to their new positions by integrating the equations of 
motion. The equations of motion are (suppressing the ion subscript, i) 

dv f -=- 
dt M 

and 
dr 
;= v, 

where v is the velocity. M is the mass, and r is the position of a particle, f is the 
total force on the particle and t is time. 

QN3D integrates these equations using a leap-frog scheme: 

VP2 + I/2 _ v” ~ l/2 fn 

At =%? 

r n+lzrn+AtVn+1/2, 

where f” is the Lorentz force 

(6) 

Using this form of f” appears to make Eq. (6) an explicit expression for v”+“* but 
since v is known only at half time steps, v” is defined as 

y” = (v n + “2 + v” ~ “2 1 
2 . 

Thus, 

v”+1/2=v”-1/2 ; et En+ 
( 

(v n + I/2 + v” ~ l/2) x B” 

2c > 
7 

which includes implicit terms on the right-hand side. Moving the implicit terms to 
the left gives a matrix equation of the form 
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Fortunately, A” always has an inverse given by 

where 

eAt 
a=- B;, 

2Mc 

eAt 
/I=-- B;, 

2Mc 

e At 
y=2Mc 

-BZ 

and 

6= 1 +c?+j?2+y? 

Thus the equation that solves v”+‘12 is 

v”+1/2+,“)-l .S”, 

which is now completely explicit. Now the positions can be advanced by solving 

After this computation, the velocities are known at time step n + 4 and the 
positions are known at time step n + 1. However, the field solve requires the charge 
and current densities at the i integer time step, thus the particles must be pushed 
only one-half time step from their previous positions, i.e., 

which is equivalent to 

r ” + ‘I2 = 4 (r ?l+l +f), 

r n + 112 = fl + $! v” + 112. 

After the field solve, the particles are advanced to the full time step to preserve the 
accuracy of the scheme. Since the leap-frog scheme is explicit, it can be vectorized 
directly by the compiler. 

Note that we do not employ the “tan a/a” correction mentioned by Birdsall and 
Langdon [22]. This is because the orbits in our systems are so complicated due to 
the nature of the magnetic fields, that a time step, small relative to the gyroperiod, 
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is always used. In this regime, our scheme incurs only a small phase error in the 
particle trajectories due to the neglect of this correction. 

It is straightforward to show that this scheme conserves energy identically in the 
case of no electric fields and time invariant magnetic fields: Using Eq. (7) for v”+ li2, 
considerable algebraic manipulation gives explicitly 

v” + 112 . v n+ l/2 = vH- 112 +n- 112 

Thus the numerical algorithm conserves energy identically for the static case. 
Two time-step restrictions originate from this method. The first is that scheme 

must resolve the ion cyclotron motion about the magnetic field lines. The cyclotron 
period is 

Thus At 4 t, to resolve ion orbits. We normally used At < O.lt,. 
The second restriction is that a particle should not travel more than one grid cell 

per time step. Otherwise, the assumption that the fields are relatively constant over 
the trajectory length traversed in one time step is violated. Thus At < Ax/o, with 
similar restrictions in the other directions. These restrictions are characteristically 
not as stringent as the CFL conditions. 

2.4. Interpolating Charge and Current Densities from 
the Particles to the Grid 

To find the charge and current densities on the grid, we reverse the procedures 
described in Section 2.2 and obtain similar coding, except for some surprises. A first 
attempt at the deposition might look like: 

DO 20 N = 1, NMAX 

Al = (XG(IP(N) + 1) - XP(N)) * (YG(JP(N) + 1) - YP(N))/A 

.42= 

A3= 

Ad= 

D(IP(N), JP(N)) = D(IP(N), JP(N)) + Al * Q/A 

D(IP(N) + 1, JP(N)) = D(IP(N) + 1, JP(N)) + A2 t Q/A 

D(IP(N), JP(N) + 1) = D(IP(N), JP(N) + 1) + A3 * Q/A 

D(IP(N) + 1, JP(N) + 1) = D(IP(N) + 1, JP(N) + 1) + A4 * Q/A 

CX(IP(N), JP(N)) =CX(IP(N), JP(N)) + Al * Q * VX(N)/A ** 2 

20 CONTINUE 
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where D(1, J) is the charge density at grid point (I, J) and Q is the particle charge. 
NMAX is the total number of particles and A is the area of a grid cell. This loop 
represents the contribution of a particle to the charge density of the four grid points 
surrounding it. Note that D appears on both sides of the equation since we are 
computing the running sum of contributions over all particles that are in any given 
cell. 

The problem with vectorizing such a loop is that several particles can contribute 
to the density of a particular grid point, and thus an element of the array D(1, J) 
will be assigned several values as we sweep through the particles. The compiler will 
note this point and will not vectorize the above loop. 

To circumvent this problem, we can sort the particles into groups such that 
within a group, no two particles occupy the same cell (see Fig. 5). The sorting 
algorithm requires a one-pass sweep through the particles in a non-vectorized loop. 
It is presented in detail in Ref. [23], where we cited a factor of three speed up when 
compared to scalar deposition. 

2.5. Multitasking 

QN3D has been designed to take advantage of the multitasking capability of the 
Cray-2. We have been able to multitask each phase of the computational cycle and 
discover some of the key issues involved in doing so in a time-sharing environment. 
Multitasking is judged by the CPU overlap, &‘, which is defined as [24] 

where T, is the total CPU time used and rp, the processing time, is the time during 
which at least one CPU was occupied. Since a code must compete for resources 
with other codes, the average overlap is a statistical quantity dependent on many 
factors. QN3D has been helpful in understanding some of the issues involved in 
obtaining satisfactory overlap in a time-sharing environment. 
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FIG. 5. Sorted particles in the grid. 
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Parallelizing most segments are straightforward. If we use an explicit field solve 
then each grid point gets updated field information which is independent of every 
other grid point, and thus the order in which they are done is irrelevant and they 
can be done simultaneously. Similarly, when we interpolate the field quantities from 
the grid to the particles, the fields at a particular particle’s position is independent 
of fields at any other particle, so again the job of assigning fields can be delegated 
to several tasks which can run simultaneously. The same argument applies to 
advancing the particles. 

The multigrid algorithm which solves V’E = 0 in the low density regions 
(Section 2.1.1) is also trivial to multitask. This is because the Laplacian operator 
does not couple the components of E. As a result, we simply set up a task for each 
component. Note, however that the theoretical overlap is bounded by three rather 
than four. 

Multitasking the deposition loops is more difficult. We must be careful not to 
deposit particle quantities from different groups simultaneously. However, we are 
free to partition each group into tasks because each iteration will assign values to 
arrays at unique grid cells, as guaranteed by the sorting algorithm. 

Even if a routine is parallelized, it still might not achieve significant CPU overlap 
in a timesharing environment. This area of research is quite new and QN3D has 
given us insight into some of the issues involved. In particular, we have discovered 
a relation between the task length (tk), the slice (7,) and the degree of overlap 
achieved (A). Figure 6 shows three possible scenarios. 

First note that case 1 illustrates the definition of t,. This is the amount of 
undisturbed CPU time a code is alloted each time it is given a processor. t, depends 

FIG. 6. The relation between rt and t,: Each horizontal bar represents a CPU. The shaded regions 
are other users in the time-sharing environment. ST denotes single threading code and Tl, T2, . denote 
tasks 1 through4. 
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upon the size of the code and the priority at which it is run. Case 2 illustrates the 
definition of the processing time, zp. For the section of code illustrated, it is just 
tpl + tp2. In this case, the CPU time summed over processors, z,, would be the sum 
of the lengths of the non-shaded areas, and 4 = rc/zp. 

Case 1 is the good situation. Here, zk is longer than z, and we assume that the 
staircase pattern on the right would repeat several times before the tasks are com- 
pleted. Case 2 is worse since the first task does not overlap well. Since z, is of the 
order of r8, the tasks would complete after one staircase pattern, and the effect of 
the first part of task 1 on the total overlap will be proportionally larger than the 
same part in case 1. Case 3 is the worst since most of the work is done before the 
system knows the code is able to multitask. After a code is given a processor, the 
system will attempt to give it the next available processor. If the code is not 
prepared to multitask at that point, then the system will not offer it another 
processor for the rest of its slice. Thus, if the code starts to multitask in the middle 
of a slice, long after a second processor became available, additional tasks will be 
run sequentially until the slice is up. 

‘The actual results will vary since the outcome depends on many factors. But in 
QN3D we have different sections of coding that represent the three regimes 
discussed here that confirm the general hypothesis. The interpolation of the fields 
to the particles is computationally intensive and when broken into tasks, each task 
is quite long. It achieves an average overlap of about 3. The particle advance is 
done for each particle but the calculations are simple so that task length is about 
the same as the slice. This section gets an overlap of about 2. The deposition of the 
charges and currents the grid is done in groups, which are frequently small. 
Breaking up these groups into tasks creates tasks that are shorter than the slice and 
thus realise almost no overlap. These results could be greatly effected by changes in 
the operating system’s schedualing algorithm. 

There are other parameter regimes that affect multitasking performance [25] but 
these issues here are particularly important in that the results are quite reproducible 
and the quantities rk and t, are somewhat controllable, or at least easily 
measurable to determine the feasibility of multitasking. 

3. SINGLE PARTICLE MOTION 

Before running QN3D to determine electromagnetic fields self-consistently with 
particle orbits, we followed several particle trajectories in static fields. This allowed 
us to determine the validity of the particle advancement scheme (Section 2.3) and 
to get a feeling for the type of orbits we should expect. 

We found it very useful to use a field which could be computed analytically. This 
gave us the option of either computing the fields on the grid and interpolating to 
the particle positions or computing the fields at the particle positions directly. These 
two methods allowed us to separate the numerical effects due to the particle pusher 
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from the effects induced by the interpolation from a finite grid. For the magnetic 
fields we used the Hill’s vortex. The Hill’s vortex (Fig. 7) is designated by [26, 271 

l&r, z) = Joen 
2c( 1 + a2)R 

r2(2R2 - r2 - 4a2z2) - I(/,, 

where 

Joe is the o-point current, 

R is the o-point radius, 

a is a shape factor and 

1(1,. is an arbitrary constant that we will set to 0. 

From IC/(r, z) we can compute B(r, z) 

B=VxA=> 

B = 4Jo,n 
r c(1 +a2)Rra2z 

B, = c( f:i:) R (R2 - r2 - 2a2z2). 

We have already demonstrated in Section 2.3 that our algorithm conserves 
energy identically in the case of no electric fields and static magnetic fields. The 
Hill’s vortex simulation confirmed this result. 

Since the Hill’s vortex is axysymmetric, we would also expect the canonical 
angular momentum of the particles, P,, to be conserved [28], where 

However, QN3D does not conserve angular momentum exactly and we did several 
tests to pinpoint the cause and the severity of the problem. 

, 
-50 0 50 

2 (cm) 

FIG. 7. Hill’s vortex: Contours of constant $ : R = 8 cm, a = 0.111, and Jo, = lOI statA/cm’. 
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FIG. 8. Grid effects on computing P,: The canonical angular momentum is plotted as a function of 
time normalized to its initial value. Note that both plots are from the same orbit: left, analytically 
computed I); right, interpolated $. 

z (cm) 

FIG. 9. Particle orbit in the ECS: The particle’s orbit is traced in the r-z plane: Top, particle orbit 
for 500 steps showing clearly the ECS and also showing the particle bouncing off the end of the surface; 
bottom, same orbit for 10,000 steps showing many transits of and bounces in the ECS. The plotting 
resolution is much coarser for the bottom plot making the particle appear to move in straight line 
segments. Note that 10,000 steps is much longer than any currently planned run. 

FIG. 10. Magnetic moment versus time: The magnetic moment is normalized to its initial value. This 
orbit used fields interpolated from the grid, but similar results were found from orbits using analytic 
fields. 



294 HOROWITZ, SHUMAKER, AND ANDERSON 

Though we cannot expect the particle pushing scheme to conserve P, identically, 
we did tests to see to how much variation in P, was actually due to the pusher itself 
and how much was due to the finite grid. To do this we compared orbits using 
fields computed analytically at the particle position and fields interpolated from 
the computational grid. We found that the orbits resulting from the analytic fields 
conserved angular momentum to within 0.2%, while the orbits using the inter- 
polated fields gave PO that varied as much as 30%. This conclusively implicates the 
finite grid as the cause for significant loss of conservation of P,. 

However, we have found that the choice of method used to compute P, can have 
an enormous effect on the results. Figure 8 shows P, computed from the same orbit 
(using interpolated fields) but calculated differently. For the left figure we used 
Eq. (8) to determined P, analytically at the particle position and for the right figure 
we interpolated $ from the grid to get P,. Not only does the difference in method 
cause a 12% variation in the result, but even the qualitative form of the temporal 
variations are almost completely unrelated. Such a problem is unavoidable when 
the fields have no analytic representation. 

In any case we need another criterion to judge the orbits. An interesting method 
is to use the initial energy and angular momentum to find a surface to which the 
particle is confined. This energy confining surface (ECS) is independent of time in 
static fields and thus we can test our particle orbits by how well they are bounded 
by it. Particles are bounded by 

p,-5.9 
c 

r= + 
- MY() ’ 

which is independent of time if j0 = 0. This defines the ECS. Figure 9 shows a 
particle confined to its ECS for 100 ps. Thus we conclude that our particle orbits 
are reasonable even though we lack conclusive evidence of the conservation of 
angular momentum. 

As an interesting exercise, we followed the magnetic moment of a particle 
throughout its orbit. Our results were comparable to Schwarzmeier’s [8] in that we 
saw very good conservation along straight field lines, wild fluctuations at the curved 
ends, and a non-adiabatic jump when the particle returned to a straight field line. 
See Fig. 10. 

4. NORMAL MODES 

In the single particle motion studies, the magnetic field was static. The next step 
is to solve the electromagnetic fields on the grid consistently with the particle 
motion. As a first test of the field-solving algorithm we simulate the normal modes 
of a plasma with periodic boundaries and a uniform background magnetic field 
(B,) in the z direction. This is essentially a l-dimensional problem and the results 
are compared to the analytic solutions. 



QN3D: A PIC CODE AND THE TILT MODE 295 

TABLE I 

Parameter Regime for Normal Mode Analysis: Values in the Rightmost Column 
Are for the Perpendicular Mode when Different from the Other Two Modes 

Time steps 
Particles 
Time step 
Ion density 
Cutoff density 
Ions/particle 
Domain size 
Grid size 
Grid cell size 
Particles/grid cell 
Ion cyclotron frequency 
Background magnetic field 
Electric field perturbation 

1000 
400000 
1.262 x lo-* s 
lOi particles/cc 
lOI particles/cc 
4.16 x 10” lOI 
20cmx16cmx42cm 20cmx16cmx125cm 
12x 17x49 
lcmxlcmx087cm lcmxlcmx2.6cm 
26 
3.86 x 10’~~’ 
4 x lo3 Gauss 
1 x 10m3 statV/cm 

Linear analysis reveals three normal modes of a cold plasma in the Darwin limit. 
Two of these are circularly polarized transverse waves propagating parallel to the 
gackground magnetic field, and the third is a combination of longitudinal and 
transverse displacements with propagation perpendicular to the background 
magnetic field. 

To test QN3D, we initialized waves with a given wave number and observed the 
oscillation with time of the various field quantities. A random point in space was 
chosen, and the value of the fields at that point were stored and Fourier analyzed 
in time. The results are presented in Fig. 11. 

Figure 12 shows B, Fourier analyzed in time for a right-hand mode. The 
frequency distribution is very peaked showing a definite single frequency of 
oscillation. We monitored the total energy of the system and even though our field 
equations are not in conservative form, the total energy is conserved almost 
perfectly. 

The result from the normal mode simulations were very encouraging, indicating 
the ability of QN3D to model plasma phenomena. 

0.5 1.0 1.5 

k 

FIG. 11. Frequency versus wave number. 
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FIG. 12. Fourier analysis of B, in time. 

5. THE RIGID ROTOR INSTABILITY 

As a second test of QN3D, the rotatonal instability of the 2-dimensional rigid 
rotor equilibrium is studied. The equilibrium consists of a field-reversed contigura- 
tion of azimuthal symmetry and infinite length [29]. Ions and electrons have 
different net rotational frequencies which we will denote as wi and o,, respectively. 
These rotations provide a net azimuthal current which supports an axial field 
reversal. This equilibrium is unstable to the rotational instability which has been 
studied by Harned [30] using a 2-dimensional hybrid particle-in-cell code [31]. 
The rotational instability is a deformation of the plasma cross section due to its 
rotation. Fluid theories indicate that the m = 2 mode, which is an elliptical deforma- 
tion, is the most unstable for a field reversed equilibrium [32]. Harned showed that 
the rotational instability should be less pronounced in larger machines (i.e., 
larger s). He also has used his code to demonstrate that the rotational instability 
can be suppressed with the application of quadrupole magnetic fields [33 3. Our 
purpose here is to demonstrate that our code produces results similar to Harned’s 
for the growth rates of the m = 2 mode. 

The rigid rotor problem adds three complications not encountered in the normal 
mode simulations: two spatial dimensions, conducting wall boundaries, and a 
plasma-vacuum interface. Solving these problems correctly will suggest that the 
code may be used to simulate the tilt-mode instability as well. 

5.1. Initializing the Rigid Rotor Equilibrium 

The particle distribution for a rigid rotor is [30] 

Here rl is the major radius, r0 is some measure of the minor radius, N is the total 
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number of particles in the plasma, and n, is the density at r = ri. Analytically, this 
particle distribution produces a density profile 

n,(r) = n, sech’ 

a current profile 
JO(r) = -reni(r)u* 

and a magnetic field profile [30] 

Muf Mu2 
B,(r) = c---$ + 4c * tanh[(r2 - rf)/ri], 

* e”*ro 

where w* k o, - wi and 

u, g ; (Qw, - oy. 

s1 is the ion cyclotron frequency in the background magnetic field, B=(W). Using 
Eq. (3) we can compute an electric field as 

r*e =-- BZ. 
C 

where o, is the electron rotational frequency. Note that this is a longitudinal electric 
field which seems to contradict our assumption that V . E = 0. Actually, this is still 
consistent to within the order of our approximations as described in the Introduc- 
tion. 

One might consider using these analytic expressions to initialize the fields at the 
beginning of the simulation, but computing fields based solely on particle informa- 
tion provides a much more consistent solution [34]. To do this we use ni given 
from the particles to compute J, 

Jee = -en,rw,. (9) 

W, is an input parameter. Next, we introduce the vector potential, A such that 
V x A = B and V. A = 0 (the Coulomb gauge), and apply Ampere’s law to get 
-V2A = (47r/c)J. Given Ji from the particles and J, from Eq. (9) we can solve the 
above relation for A. Once we have A we simply take the curl to get B. Then we 
solve 

J xB EC’ 
en,c 

in the plasma and 
V’E=O 
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in the vacuum region, which gives fields consistent with the initial particle distribu- 
tion. 

5.2. Boundary Conditions 

The boundary conditions have been determined by the physical constraints of a 
conducting wall and assumptions about the symmetry of the problem. To simplify 
the boundaries we confine the plasma to a box with square, open ends (z boun- 
daries). We expect that the shape of the boundary will have only a limited effect 
consistent with results found by Harned [34]. 

On the conducting wall the perpendicular magnetic field must vanish, thus 

B, = 0 on the x boundary 

B,=O on they boundary. 

Since the equilibrium starts out with only B, nonzero we assume 

B, = 0 on the x boundary 

B,=O on the y boundary. 

We also assume that the walls are far enough from the plasma so that B, is 
essentially uniform, and thus we set 

a& z=O on the x boundary 

as,=0 
ay on the y boundary. 

For the electric field we have similar constraints. Since there can be no parallel 
electric field on a perfect conductor we set 

E,=E,=O on the x boundary 

E,=E,=O on they boundary. 

By assuming that the entire plasma is charge neutral, we would expect V. E to be 
zero on a surface arbitrarily close to the conducting wall, thus we set 

E&O 
ax 

on the x boundary 

!%A, 
ay 

on they boundary. 

Particles that contact the conducting wall are lost from the system. 
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Since the equilibrium is assumed to be uniform in z, we set the axial derivative 
of all components of all fields equal to zero on the ends of the domain. Particles 
that leave one end of the device are replaced at the other end as if the domain were 
periodic in z. 

As mentioned previously the explicit field solve iteration scheme is not applicable 
to low density regions. Instead, we solve V*E =0 in low density regions. It is 
interesting to note that Harned had trouble with this “two-region” scheme [31]. He 
observed an anomalous rapid radial diffusion of the particles into the vacuum 
region by t = 1852-l. Thus he constructed a “three-region” scheme which success- 
fully contained the particles. We, however, did not experience any radial diffusion 
at all out to t = 14252 -‘. Therefore, we have decided to use the two-region scheme 
as long as it seems adequate. 

5.3. Results 

To monitor the growth of the rotational instability, we did as Harned [30] and 
Fourier analysed 6r in theta and plotted the azimuthal mode number, m. The 
dominant mode was m = 2 (Fig. 13). One can observe the qualitative formation of 
the rotational instability by plotting the particle currents or positions in the x-y 
plane (Fig. 14), or by plotting the particle distribution in theta (Fig. 15). We did 
several runs for different values of ~1s -oJ(w, - oi). Our results basically agree 
with Harried’s but differ significantly for low c1 as shown in Fig. 16. 

103 m=2 

0 1 2 0 1 2 

t w t (IIS) 

FIG. 13. M = 2 as the dominant mode: For a = 1, the amplitude is shown for m = 0, . . . . 5 versus time. 
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FIG. 14. Observing growth of rotational instability: Ion current and particle positions in x-y plane, 
r=O and t= 14252-l. 

FIG. 15. Particle distribution in ~9 showing growth of rigid rotor instability: Distribution of particles 
in 0. Top row: t = 0, bottom row: f = 142W’. 
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FIG. 16. Harned’s results--y/Q versus CC This figure is from Phys. Fluids 26, 1322 (1983). The stars 
indicate our results. Reproduced with permission of the author and the American Institute of Physics, 
0 AIP, 1983. 
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TABLE II 

Parameter Regime for Rigid Rotor Problem: 
Some Values Varied from Run to Run 

Time steps 
Particles 
Time step 
Ion density 
Cutoff density 
Ions/particle 
Domain size 
Grid size 
Grid cell size 
Particles/grid cell 
Ion cyclotron frequency 
Background magnetic field 
Major radius 
Minor radius 

1400 
200000 
2 x 1o-9 s 
10” particles/cc 
lOi particles/cc 
4.1 x lo’* 
48.7 cm x 48.7 cm x 87.4 cm 
39 x 39 x 7 
1.35 cm x 1.35 cm x 2.19 cm 
23 
4-8x 1O’s-’ 
4 - 8 x lo3 Gauss 
4.06 cm 
4.49 cm 

The origin of this discrepancy is not yet understood. Further investigation seems 
to indicate that particles near the plasma-vacuum interface increase in angular 
momentum giving the plasma an effectively higher tl than the initial conditions. 
This, in turn, causes the growth of the rotational instability. 

For the low c1 cases, we investigated the numerical effects of increasing the 
number of particles and the number of grid cells. Neither change effected the results 
of the simulations. This is fortunate for the computational model in general since 
it demonstrates the code’s insensitivity to these parameters. But, unfortunately for 
the rotation simulations, increasing the number of particles or the number of grid 
cells did not improve the low CI results. However, the 3-dimensional equilibria used 
for the tilt mode problems of the next section did not exhibit the rotational 
instability even though the ions had no rotation (i.e., low a). Thus we conclude that 
though this problem is troublesome, apparently, it does not effect the tilt mode 
results. 

In addition, we also monitored the system energy as was done in the normal 
mode simulation. Again, we find that the total energy is conserved very well. We 
also monitored the magnetic flux through an arbitrary plane perpendicular to the 
z axis, and found that it was conserved very well as we would expect in the presense 
of a conducting boundary. The parameters for the rigid rotor runs are given in 
Table II. 

6. TILT MODE PROBLEM 

6.1. Initializing the FRC Equilibrium 

The FRC equilibrium configuration is assumed to be axisymmetric and 
symmetric about the midplane. QN3D accepts as input, the axisymmetric magnetic 
field, the ion particle density, and the ion temperature on a 2-dimensional T-Z grid 
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which extends from the midplane outward and from the axis outward. As a result 
of these symmetries, the code computing the fields must only supply them on 
one-fourth of the r-z plane. These quantities are mapped to the rest of the 
3-dimensional domain using these symmetries. The runs done here use equilibria 
computed by EQV, a kinetic equilibrium code developed by Shumaker [35]. EQV 
computes an equilibrium given an ion distribution as function of the Hamiltonian 
and the canonical momentum. Like QN3D, it uses a cold, inertialess model for 
electrons. 

6.2. Circular Boundaries 

A further refinement of the boundaries was added for the FRC problem. The 
basic idea is to model the cylindrical wall as closely as possible. Even though we 
mentioned that it was not necessary for the rigid rotor problem, it is necessary here 
if we want to include passive mirrors in the machine. 

To model this configuration, we assume that any grid point (I, J, K) is part of the 
computational region if and only if 

XG(1) ** 2 + YG(J) ** 2 < RG(K) ** 2, 

where RG(K) is the radius of the perfectly conducting wall at ZG(K). To imple- 
ment this condition we label any point exterior to the coil as a vacuum cell. Thus 
it is ignored by the plasma field solve. In the vacuum, we assume that the electric 
field is zero outside the coil therefore V x E = 0 and thus B = 0. 

6.3. Observing the Tilt Mode 

As mentioned in the Introduction, we expect the tilt mode to be unstable when 
the ion gyroradius becomes small with respect to the size of the plasma. A con- 
venient measure of this relative size is s, which is a measure of the number of ion 
gyroradii between the o-point and separatrix. For higher s we would expect the 
plasma to act like a fluid. Analytically [36], 

s& 
i 

rs r dr -- 
R rs p;(r)’ 

(10) 

where R is the o-point radius, rs is the separatrix radius, and pi is the ion 
gyroradius. We investigated two cases, one with s = 1.6 and another with s = 12. 
The parameters of these runs are summarized in Table III. These two equilibria 
have similar sizes and the same ion temperature. Thus to increase s the magnetic 
field must be increased. This leads to an increase in the magnetic field pressure, 
which requires a higher density. Alternatively, s could have been increased by 
increasing the size of the plasma. 

We used many diagnostics to observe the tilt mode. First, we plotted flux 
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TABLE III 

Tilt Mode Parameters: Both Cases Used l,OOO,OOO Particles in a Grid 41 Cubed 

s=12 s= 1.6 

Background B 
Peak density 
AlfvCn speed 
Ion temperature 
Separatrix length 
Separatrix radius 
Wall radius 
MHD growth time 
Computed growth time 
Poloidal flux 

Encircled by o-point radius 
Enclosed by wall 

2.2 x lo4 G 
7.0 x 10i6/cm3 
1.82 x 10’ cm/s 
200 eV 
33 cm 
12 cm 
20 cm 
0.97 /Is 
0.92 ps 

2.0 x lo6 G . cm2 
l.8x106G.cm2 

2.7 x lo3 G 
1.1 x lO”/cm’ 
1.78 x 10’ cm/s 
200 eV 
35 cm 
12cm 
20 cm 
0.99 ps 
12.6 /IS 

2.5 x 10’ G . cm* 
2.2 x lo6 G cm* 

contours. For a cylindrically symmetric configuration the flux contours are also 
contours of constant II/ (L rAO) and we find A0 by solving 

This was very helpful in that we were able to see the plasma tilting very easily 
in the high-s case and not at all in the low-s case. However, when the plasma starts 
to tilt, it loses its axisymmetry and the contours of constant $ are no longer the flux 
surfaces of the magnetic field. Nevertheless, these plots gave us a qualitative indica- 
tion that the phenomena was occurring in the high-s regime and not in the low-s 
regime (see Figs. 17 and 18). 

For another visual diagnostic we simply plotted contours of constant particle 
density. This showed very clearly that one case tilted while the other did not (see 
Figs. 19 and 20). 

It is important to remember that the tilt mode instability observed here grew out 
of the noise in the simulation introduced by the random nature of the particle 
initialization. No initial perturbation was employed to help the plasma develop the 
tilt. 

For a quantitative diagnostic, we tried a method suggested by Tuszewski [37] of 
the Los Alamos National Laboratory. He suggested that we simulate the measure- 
ment of the Faraday rotation of a light beam shot through the plasma. This has 
special relevance for him since it is a measurement he can do in the laboratory. This 
rotation is proportional to the integral of the density multiplied by the normal 
magnetic field [ 381, i.e., 

0, a n,B. dl, I (11) 
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FIG. 17. Tilting I) surfaces: s= 12; top, Opts; bottom, 2~s. 
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FIG. 18. Non-tilting $ surfaces: s = 1.6; top, 0~s; bottom, 2~1s. 
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FIG. 19. Tilting density surfaces: s= 12; top, Op; bottom, 3~s. 
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FIG. 20. Non-tilting density surfaces: s = 1.6; top, 0~; bottom, 3~s. 
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where the integral is along the beam. From symmetry, it is clear that 0, is initially 
zero in an FRC. However, as the tilt mode develops, some rotation should be 
noticeable (Fig. 21). In fact, we should be able to recognize the tilt mode by the 
signature in a plot of 0, as a function of z (Fig. 22). 

Implementing this diagnostic was trivial. We simply did the integral of Eq. (11) 
along several grid lines in the x-z plane to find 0, as a function of z. We also did 
it along lines in the y-z plane in case the plasma tilted in that plane. 

By plotting 0, as a function of z we saw the tilt signature clearly in the high-s 
case but it was absent in the low-s case (Fig. 23). In order to pick the tilt mode 
signature out of the noise we fitted the data to a polynomial with the same 
signature. In particular, we found the least-squares lit to 

f,(z) = (AZ4 - Bz8)e +y 

where L is predetermined and A and B are found by the fitting procedure. The x 
subscript indicates that the polynomial fits the data found from the Faraday 
rotation diagnostic done in the x-z plane. A similar function, fY(z), was found for 
the y-z plane data. To get a magnitude from these functions we simply integrated 
the square of these functions, took the sum and then the root, i.e., 

112 
IQFI = Jz;: (f:(z) +f;(z)) dz 1 

FIG. 21. Faraday rotation concept: Depicted is one magnetic Field surface. The vertical lines represent 
light beams from a diagnostic device. The segments colinear with the beams represent the contribution 
of the field to 8,. In the top figure all of the contributions cancel at all axial positions. In the lower 
figure, a tilt has developed and the contributions no longer cancel. Note that for the inner beams 8, 
is positive, while for the outer beams, it is negative. 
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FIG. 22. Expected tilt mode signature from Faraday rotation diagnostic: 8, is plotted as a function of 
z. Cases that tilt should show this qualitative structure. 

Using both f, and f, allows us to observe the tilt mode if it does not happen to 
occur in either of the planes completely. leFl is recorded as a function of time for 
both cases and growth rates are computed. The results are quite clear. The high-s 
case shows the tilt growing with a growth rate close to MHD predictions. The low-s 
case shows only slight growth if any at all. Other polynomials with the same basic 
structure were used to fit the simulated data. They all gave similar results. 

These results compare favorably with preliminary results from Barnes et al. [9] 
(see Fig. 24). There results were normalized to the MHD growth rates. A simple 
expression for the MHD growth rate does not exist [l, 21. One reason is its 
dependence on the exact form of the equilibrium distribution. We use the following 
equation for an estimate of the growth rate which give reasonable agreement with 
others’ results [ 1,2]. 

z (4 

* * 
- 2.0 

, 1 
-30 -Xl -10 0 10 20 30 

z (cm) 

FIG. 23. Faraday rotation results: The top figure is for s = 12 and the lower figure is for s = 1.6. The 
smooth lines are the fitted polynomials. 
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FIG. 24. Barnes’ results: This figure is from Phys. Fluids 29, 2623 (1986). The stars indicate our 
results. Reproduced with permission of the authors and the American Institute of Physics, 0 AIP, 1986. 

where L is the axial length of the plasma. This is the inverse of the time it takes for 
an Alfven wave to traverse the system. We would not expect exact agreement since 
their equilibria are different and they are measuring the displacement of the flux 
surfaces rather than the Faraday rotation. However, the general agreement is very 
encouraging. 

As usual, we also recorded the energy of the system as a function of time for each 
case. Both cases conserved energy to within 1%. 

7. CONCLUSIONS 

Quite fortunately, we have been able to give strong credence to the initial 
hypothesis that the tilt mode will exist in regimes of higher S. This result, by itself, 
is important for those planning to build larger FRC experiments. But, in addition, 
QN3D has a major advantage in that it should be able to model the nonlinear 
regime of the tilt mode which will be even more crucial to the future of FRC 
experiments. 

In the process of investigating the tilt mode, we have developed a major com- 
putational tool which should continue to provide important results to many other 
plasma physics problems that could benefit from particle simulations. 

It is worthwhile to note that the computations presented here would have been 
impossible without the Cray-2 computer. The field length of QN3D for these runs 
was about 25 million words (which is equivalent to 1.6 trillion bits). The largest 
Cray X-MP computers to data have only 16 million words of memory. Each run 
of the tilt mode problem used 50 hours of Cray-2 resource time and took nearly a 
week to complete in the time-sharing environment. Though they are still quite 
expensive, as computers continue to get larger and faster, particle codes will become 
more feasible. 
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